2,085 research outputs found

    Plant communities of travertine outcrops of the Saturnia area in southern Tuscany (central Italy).

    Get PDF
    Abstract A phytosociological survey was carried out in a poorly known travertine area of southern Tuscany harbouring a rich vegetation mosaic with chamaephytic garrigues, species-rich xerophytic grasslands, chasmophytic coenoses, annual species-dominated communities, shrublands and thermophilous deciduous forests. Field sampling and data analysis allowed to identify and characterize several community types, some of which of significant interest due to their ecological specificity and rarity in peninsular Italy. In particular, our data confirm the associations Pistacio terebinthi-Paliuretum spinosae and Pistacio terebinthi-Quercetum pubescentis, respectively a shrub and forest community type previously unknown for Tuscany. In addition, a new therophytic association of travertine debris named Sedetum hispanico-caespitosi and placed in the Hypochoerion achyrophori alliance (Brachypodietalia distachyi order, Tuberarietea class) is also described. Finally, dynamic relationships between the vegetation types are highlighted and the presence of conservation priority habitats in the area are pointed out

    Probing neutrino masses with CMB lensing extraction

    Get PDF
    We evaluate the ability of future cosmic microwave background (CMB) experiments to measure the power spectrum of large scale structure using quadratic estimators of the weak lensing deflection field. We calculate the sensitivity of upcoming CMB experiments such as BICEP, QUaD, BRAIN, ClOVER and PLANCK to the non-zero total neutrino mass M_nu indicated by current neutrino oscillation data. We find that these experiments greatly benefit from lensing extraction techniques, improving their one-sigma sensitivity to M_nu by a factor of order four. The combination of data from PLANCK and the SAMPAN mini-satellite project would lead to sigma(M_nu) = 0.1 eV, while a value as small as sigma(M_nu) = 0.035 eV is within the reach of a space mission based on bolometers with a passively cooled 3-4 m aperture telescope, representative of the most ambitious projects currently under investigation. We show that our results are robust not only considering possible difficulties in subtracting astrophysical foregrounds from the primary CMB signal but also when the minimal cosmological model (Lambda Mixed Dark Matter) is generalized in order to include a possible scalar tilt running, a constant equation of state parameter for the dark energy and/or extra relativistic degrees of freedom.Comment: 13 pages, 4 figures. One new figure and references added. Version accepted for publicatio

    Semi-analytic modelling of galaxy evolution in the IR/submm range

    Get PDF
    This paper proposes a new semi-analytic modelling of galaxy properties in the IR/submm wavelength range, which is explicitly set in a cosmological framework. This type of approach has had some success in reproducing the optical properties of galaxies. We hereafter propose a simple extension to the IR/submm range. We estimate the IR/submm luminosities of ``luminous UV/IR galaxies'', and we explore how much star formation could be hidden in heavily--extinguished, ``ultraluminous IR galaxies'' by designing a family of evolutionary scenarios which are consistent with the current status of the ``cosmic constraints'', as well as with the IRAS luminosity function and faint counts, but with different high-z IR luminosity densities. However, these scenarios generate a Cosmic Infrared Background whose spectrum falls within the range of the isotropic IR component detected by Puget et al. (1996) and revisited by Guiderdoni et al. (1997). We give predictions for the faint galaxy counts and redshift distributions at IR and submm wavelengths. The submm range is very sensitive to the details of the evolutionary scenarios. As a result, the on-going and forthcoming observations with ISO and SCUBA (and later with SIRTF, SOFIA, FIRST and PLANCK) will put strong constraints on the evolution of galaxies at z=1 and beyond.Comment: 21 pages, Latex, 20 postscript figures, accepted for publication in Month. Not. Roy. Astron. So

    Impact of reionization on CMB polarization tests of slow-roll inflation

    Full text link
    Estimates of inflationary parameters from the CMB B-mode polarization spectrum on the largest scales depend on knowledge of the reionization history, especially at low tensor-to-scalar ratio. Assuming an incorrect reionization history in the analysis of such polarization data can strongly bias the inflationary parameters. One consequence is that the single-field slow-roll consistency relation between the tensor-to-scalar ratio and tensor tilt might be excluded with high significance even if this relation holds in reality. We explain the origin of the bias and present case studies with various tensor amplitudes and noise characteristics. A more model-independent approach can account for uncertainties about reionization, and we show that parametrizing the reionization history by a set of its principal components with respect to E-mode polarization removes the bias in inflationary parameter measurement with little degradation in precision.Comment: 9 pages, 6 figures; submitted to Phys. Rev.

    Simulations of the Microwave Sky and of its ``Observations''

    Full text link
    Here follows a preliminary report on the construction of fake millimeter and sub-millimeter skies, as observed by virtual instruments, e.g. the COBRA/SAMBA mission, using theoretical modeling and data extrapolations. Our goal is to create maps as realistic as possible of the relevant physical contributions which may contribute to the detected signals. This astrophysical modeling is followed by simulations of the measurement process itself by a given instrumental configuration. This will enable a precise determination of what can and cannot be achieved with a particular experimental configuration, and provide a feedback on how to improve the overall design. It is a key step on the way to define procedures for the separation of the different physical processes in the future observed maps. Note that this tool will also prove useful in preparing and analyzing current (\eg\ balloon borne) Microwave Background experiments. Keywords: Cosmology -- Microwave Background Anisotropies.Comment: 6 pages of uuencoded compressed postscript (1.2 Mb uncompressed), to appear in the proceedings of the meeting "Far Infrared and Sub-millimeter Space Missions in the Next Decade'', Paris, France, Eds. M. Sauvage, Space Science Revie

    Development of large radii half-wave plates for CMB satellite missions

    Full text link
    The successful European Space Agency (ESA) Planck mission has mapped the Cosmic Microwave Background (CMB) temperature anisotropy with unprecedented accuracy. However, Planck was not designed to detect the polarised components of the CMB with comparable precision. The BICEP2 collaboration has recently reported the first detection of the B-mode polarisation. ESA is funding the development of critical enabling technologies associated with B-mode polarisation detection, one of these being large diameter half-wave plates. We compare different polarisation modulators and discuss their respective trade-offs in terms of manufacturing, RF performance and thermo-mechanical properties. We then select the most appropriate solution for future satellite missions, optimized for the detection of B-modes.Comment: 16 page

    Simulations for single-dish intensity mapping experiments

    Full text link
    HI intensity mapping is an emerging tool to probe dark energy. Observations of the redshifted HI signal will be contaminated by instrumental noise, atmospheric and Galactic foregrounds. The latter is expected to be four orders of magnitude brighter than the HI emission we wish to detect. We present a simulation of single-dish observations including an instrumental noise model with 1/f and white noise, and sky emission with a diffuse Galactic foreground and HI emission. We consider two foreground cleaning methods: spectral parametric fitting and principal component analysis. For a smooth frequency spectrum of the foreground and instrumental effects, we find that the parametric fitting method provides residuals that are still contaminated by foreground and 1/f noise, but the principal component analysis can remove this contamination down to the thermal noise level. This method is robust for a range of different models of foreground and noise, and so constitutes a promising way to recover the HI signal from the data. However, it induces a leakage of the cosmological signal into the subtracted foreground of around 5%. The efficiency of the component separation methods depends heavily on the smoothness of the frequency spectrum of the foreground and the 1/f noise. We find that as, long as the spectral variations over the band are slow compared to the channel width, the foreground cleaning method still works.Comment: 14 pages, 12 figures. Submitted to MNRA

    Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons

    Get PDF
    Topological insulators are fascinating states of matter exhibiting protected edge states and robust quantized features in their bulk. Here, we propose and validate experimentally a method to detect topological properties in the bulk of one-dimensional chiral systems. We first introduce the mean chiral displacement, and we show that it rapidly approaches a multiple of the Zak phase in the long time limit. Then we measure the Zak phase in a photonic quantum walk, by direct observation of the mean chiral displacement in its bulk. Next, we measure the Zak phase in an alternative, inequivalent timeframe, and combine the two windings to characterize the full phase diagram of this Floquet system. Finally, we prove the robustness of the measure by introducing dynamical disorder in the system. This detection method is extremely general, as it can be applied to all one-dimensional platforms simulating static or Floquet chiral systems.Comment: 10 pages, 7 color figures (incl. appendices) Close to the published versio

    Alström Syndrome: Genetics and Clinical Overview

    Get PDF
    Alström syndrome is a rare autosomal recessive genetic disorder characterized by cone-rod dystrophy, hearing loss, childhood truncal obesity, insulin resistance and hyperinsulinemia, type 2 diabetes, hypertriglyceridemia, short stature in adulthood, cardiomyopathy, and progressive pulmonary, hepatic, and renal dysfunction. Symptoms first appear in infancy and progressive development of multi-organ pathology leads to a reduced life expectancy. Variability in age of onset and severity of clinical symptoms, even within families, is likely due to genetic background

    Early oral colostrum administration in preterm infants

    Get PDF
    • …
    corecore